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Abstract. A lamice model for liqnid metals proposed by MNara, Ogawa and Matsubara is
studied using high-temperature series expansions. The grand-canonical potentials are expanded
exactly to order §° and the susceptibititics are expanded 1o order 811 on two-, three-, and four-
dimensional hypercubic lattices. It is conjectured that, for fixed values of the fermion hopping
energy and fermion chemical potential, the system goes critical only at particular values of
the Tattice-gas chemical potential. The critical values of the lattice-gas chemical potential and
the critical temperature are calculated self-consistently and the critical exponent of the inverse
isothermal compressibility is estimated using Padé approximants. It is concluded that the critical
behaviour of the model is not affected by the presence of the fermions. This conclusion is
consistent with the exact solution on a one-dimensional lattice by Thompson, Matsubara and
Yang.

1. Introduction

In a previous publication, a lattice model for metal-non-metal transitions proposed by
Nara, Ogawa and Matsubara (NOM) [1] was solved by Thompson, Matsubara and Yang
(T™Y) [2] on a one-dimensional lattice. The model is composed of spinless fermions on a
background of lattice gas atoms with nearest-neighbour atomic interactions and electronic
hopping. It was found that, near the critical point (T — 0%), the thermodynamic and
cluster-size properties of the model were not affected by the presence of the fermions.
However, properties of the model in higher dimensions are still unknown. This paper studies
high-temperature series expansions for the problem on two-, three- and four-dimensional
hypercubic lattices.
The model is defined by the Hamiltonian

H==JY o0;—1Y oo;(ala +ala) (L.1)

{74 (Ej}
where 0; = 0, 1, represents the absence and presence of a lattice gas atom at site i, and a;
(af ) are fermion annihilation (creation) operators at site {. Equation (1.1) is definad on an

N-site regular lattice and the other notations are standard.
The grand partition function is defined as

Zg =Trexp[ — BH + BN, + BuysNy]
N

N
= Trexp [ﬁJ Ea,—aj -+ ﬁtZa,-aj (afa,- + a}a,-) + B Za,- + Biiy Z”":| (1.2)

2)) (£} P=1 i=1
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where t; and puy are the chemical potentials of a lattice gas atom and of a spinless fermion,
respectively. A = Y o, and Ny = T n; are their respective total number operators,
and n; = afa, is the fermion number operator at site .

When (1.2} is expanded as a power series, each term can be associated with a unique
graph. In this paper, (1.2) is expanded to order of 8'°. The critical properties are obtained
by analysing the derived susceptibility series.

2. High-temperature series expansions

Following our work on the strongly correlated Hubbard model [3-5] and the strongly
correlated Falicov-Kimball model [6], we define

& N
Zo=Tz' =] 3. &I 3 F=t+a"a+z0" @b
i=] =01}  Jj=} {m;=0,1}

where z; = ef* and z; = e/ are the fugacities of a lattice gas atom and a fermion,
respectively, The grand partition function Zg can then be written as

Zg = Zo{eP' ™) = [1 + Z (‘8 J)n (H"}jl (2.2)
where .
A)= uz%Tr iz} 4 23)
and
Ho= [1 + g(afaj + a}a,-)] 0i0; . 24

i)

If we associate (Tcr,crj } with a bond connecting the two nearest-neighbour sites { and j,
and associate {0;0;7¢; @;) with a fermion walk from site j to site i along the bond, {}}) can
be represented by fermion walks of up to n steps on graphs of up to n edges embeddcd in
the lattice.

As far as the partition function is concerned, the relevant configurations are those which
leave the state of the system unchanged. In the graphical representation, fermions must
return to their initial position at the completion of the walk, This implies an equal number
of fermion creation and annihilation operators at any lattice site. Using the anti-comumutation
relation of the fermions, and noting that the spin operators commute with each other and
with the fermion operators, those operators which operate at the same lattice site can be
brought together. If we also notice the fact that {(o2) = {¢) and (n?) = (n}, the magnitude
of the weight of a graph is composed of the following factors:

{o — e ozt = EP
)= (1+z,)<1 +25) {,gln; v ’
1 Zf
toafa) = ———o— onzfz} =pp
Tr 0T 2 2, T4 = raty = @5)

1 z 1
A __ _ a.n _ —
gaa'} = E E o(l—-mgfdi=— ——— =
( ) (1 ' Z[)(l l Zf) S5 1 “f 1 ! U 1 zf Pl‘?f

= p(l— pp).
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All graphs of up to » edges contribute to (H3). The rules for caleulating the weights
can be summarized as follows.

(i) The power of p; is equal to the number of lattice sites a graph occupies.

(ii) The power of py is equal to the number of fermions. All fermions must be moved and
the initial fermion configuration must be restored at the completion of the walk.

(iii) The power of g is equal to the number of lattice sites visited and left unoccupied by
any fermions at the completion of the walk.

(iv) The power of t/J is equal to the total number of step movements of the fermions.

(v) The sign of the weight is determined by the number of permutations of the fermion
operators required to bring together the operators at the same lattice site.

For instance, on the square lattice, the three-site graph e—e—e has six embeddings.
For (7{3) on this graph, there can be no more than one fermion. The fermion could initially
be at either end of the graph with a two-step movement, or it could initially be at the middie
site with two two-step movements. The weight of the graph can therefore be calculated as

2 2
t t
6p; [Kamo +{2x 1Ky +1x 2K32n)(7) PffIf] = 36p; +72p} (7) Prar (2.6

where the combinatorial factor K.,y is associated with {’Hg) on an m-edge graph with a
2u-step fermion movement which visited v edges. It is calculated through

Kpoo =1
Kunoo = n!
Komoo =0 when n<m or n,m<0 or #>0 and m=0

(2.7
Kut1mo0 = mKuymoo +mKgm_100

min{n=~2u,m)

Ky = Ci‘u Z C?_m_f.uKn—Zu,i.D,O when u,v#0
I=m—v
where C; = i1/(i — j}j!.
The grand-canonical potential per lattice site g is the N-coefficient of the Z5 expansion

1 1 & J'z
g=—N_,BanG=Eln qrgr _Eg(ﬁ ) 2.8)

where (’Hg}l is the N-coefficient of ('HS} andg;=1—py.
For instance, the grand-canonical potential of the model on the square lattice is expanded
as

BJ (ﬁJJ‘* t\?
E_EIH(QIW)—E Tr2pt 2P12+4P12 5 ) pras +12p7 —14p}

BJy d 3 1\ 4
+5|2p P+ 12p] 7 PIQf+36P{+72Pa 7 ) Pras +90p;

2
f
- 84pf(7) pray —360p; + 232pf] ] +0((B1)%)
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_ % I[(1 — pi)(1 — py)]

-2 {‘” z+‘*8“2[z+4(

2
T ) ( )pf+12p;—14p,2]
3 2 2
(‘3“’) [2+12( ) f—12( ) +36p;+72pg(;) Py

J
t
_'?Zp;(J) pf+90p! 84[);( ) pf+84p1( ) pf—360p[ +232p,]}

+0(8NY). 2.9

Lo

In general, on hypercubic lattices, g has the expansion form

1
g= ,E In{(1 — p)(1 ~ ps)]
i (8 = lnlle/2{n=i=D/2} min() [+2)
n!

n=1

2
a$)r} (f,) B @10
i=0 =0 k=1--dp;
where [n/2] is the integer part of #/2 and §;; is the Kropecker delta.

On the square lattice, comparing (2.9) with (2 10), we have aé =12 aa) =12, a(f)l =4,
al = —4, a2 =12, a2 = —14; afp = 2 o =12,a =-12,a 100_36 al =72,
all = <72, al} = 90, o = —84, am = 84, all) = —360, af) = 232.... The
expansions are carned out to order of Hi° on two-, three- and four-dimensional hypercubic
lattices for general values of 7, u; and ps and to order of H}? for # = 0.

Expansions of the thermodynamic quantities can be calculated using standard
thermodynamic relations {7]. For instance, the lattice-gas and the fermion densities are
calculated as

8 dg 8 3
pr=—t =B _gp— p)E
Ay apy Bpy ap @.11)
dg dg dpr g '
pf =———=—————=—fps(l — py}—.
B, 9p; o Brs Ry

It is easily proved using the particle~hole symmetry properties for lattice gas atoms and
for the fermions that

o= when =0 and pr=-—dJ

B

(2.12)
when py =0,

-

pr =

Our high-temperature series-expansion data are consistent with (2.12).

The critical behaviour is obtained by analysing the susceptibility series. In particular,
the lattice-gas susceptibility has the same critical behaviour as the isothermal compressibility
and is given by

3g 2 [ ag 323]
= ——Z = — 1i— 1—2p) = -
Xt W B pi(1—piy|( pi) P +o(-p) ap7

t The additional expansion coefficients are available at the British Library, reference number SUP 70052,
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Y 212 mindiny211@n—i-2)/21)
= Bpr (1 — pp) + Bpi (1 —p)Z (ﬁ )

n=1 =0 =0

min(2f,i+2) 2F
X3 (G A+ —2p) + G+ 206+ DA - p:)}a,‘;‘;p,( J) vf-
k=[-50j

(2.13)

Without loss of generality, in the following an arbitrary unit of energy is chosen so that
J = 1. The susceptibility in (2.13) can then be expanded as a power series in B, t, ¢ and
is. Explicitly, we have

00 n [n—i)f2] (n—i-2jH1-85) )
u=B)_F3 3> > whwptui. @.14)
n

i=0 =0 k=0
F(ozx; example, (\zw)'e have on tgf): square lattl(c;;, that (0) (;45, “r():}Ju l (3{)& =0, u%)? = —313’
_ 1 — 1 _ 1 _ 83 _ 1 _ -
oo = 16 %im = ~p “zoo = —1ig %000 = —oer Hoto = —33 4on = O Uy = —1,
uﬁ)o = 116, u% = i, “300 = 0,.... Higher-order exansion coefficients can be derived

from the expansion coefficients for the grand-canonical potential given in the appendix.

3. Series analysis

From the lattice-gas—Ising-model equivalence, it follows that, when ¢t = 0, there is only
one value for p; (= —dJ) at which the system goes critical. The model with the above
parameter values corresponds to the Ising model in a zero external field. It is easily seen
from the last section that. when ¢ = 0, the critical behaviour is independent of the fermion
chemical potenUal iy or fermion density py. This suggests that the model with £ = 0,
wp=—dd (p = ) for any value of sy (pr) should have the ksin cnt1ca1 behaviour.

Whent =0, the relevant expansion coefficients for g are “;oo Two extra terms are
obtained for those coefficients to order n = 12. Standard methods [8] for series analysis are
applied to the series. The results compare favourably with the known values for the Ising
model in two and three dimensions. The value of ¥ is known to be % exactly [9] in two
dimensions and 1.23%90 % 0.0025 in three dimensions [8, 10, 11].

The upper critical dimension of the Ising model is 4. Therefore, it is expected that
¥ = 1 in four dimensions. However, the numerical analysis indicates a higher value. It
is often the case that logarithmic corrections occur at the critical dimension [12]. The
fogarithmic correction terms will account for the apparent inaccuracy of the Padé analysis
in four dimensions.

1t is observed numerically from our high-temperature series expansions that

o

=0 for any 8 and gy . 3.1
B

pr=—d,t=0

Equation (3.1) is confirmed on two-, three- and four-dimensional hypercubic lattices to
order of 813, which is the highest order of our expansion. From (2.14), equation (3.1) is
equivalent to

f
i (-dy' =0 for 0gn. (3.2)
i=0



370 YSYang et al

-2.0
— lt=0.2
2.1 =-
S
% \
F 22- K
/
() 2.4 T N — T T ml
o 1 2 3 4 5
B
3.0
iw0.2]
3.1
—_—
Fard
Sk I
(&) -3.4 1 T T T T
° 1 2 a 4 5
B
4.0~
i=0.2]
‘\
=4,1 = t=0. 4
e,
: g
f -4.2 ~— m \
4.3 1=0.8
~—
() 44 T T T T 1
0 1 2 3 4 5

Figure 1, The lattice-gas chernical potential wamax at which xi is 2 maximum, calculated with y
expanded to order of B'! (n = 10) and for g =0: (a) on the square lattice; (&) on the simple
cubic lattice; {¢) on the four-dimensional hypercubic lattice,

It is also established numerically that, for any fixed 8 and ¢ = 0, yx,; takes its maximum
value at p; = —d.

Therefore, when ¢ = 0, the critical behaviour of the system can be determined by first
finding the value of ) = nax at which y; takes its maximum value with fixed temperature,
then analysing x; as a power series in § at @ = tmax-

When £ 3¢ 0, it is not expected that a similar exact relation exists. One needs to analyse
a true multi-variable series to determine the critical behaviour of the system. Unfortunately,
there is not a generally accepted reliable method. The partial differential approximation
{PpA) method [8] might be of possible assistance but the authors were unable to apply it to
the present series,

When ¢ # 0, in a wide temperature range (8 = B), for fixed 8, ¢ and uy, the value
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Figure 2. The lattice-gas chemical potential g, at which x; is a maximum, calculated with x;
expanded to order of 8! (n = 10) and for 4z = ! (a) on the square lattice; (#) on the simple
cubie lattice; {c) on the four-dimensional hypercubic lattice,

xi=BY. 3 Uu(d=1,1p5) 8"t

n=0 =0

of (t; = fmax at which y; takes its maximum is insensitive to the actual value of the
temperature, as shown in figures ! and 2. From the figures, it is seen that g4y, changes by
a few per cent when 8 changes by an order of magnitude. On the other hand, the value of
x1 changes rapidly with 8.

From the above discussions and by analogy with the pure lattice gas or ¢ = 0 case, it is
conjectured that for each value of ¢ > 0 and uy > 0, there is only one value for p; at which
the system goes critical. Therefore, by fixing values for ¢ and iy, the problem reduces to
a two-variable series. Regarding ¢ and uy as parameters, (2.14) can be rewritten as

(3.3
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Figure 3. ,w,("] () versus 1/n for pe = 0 and various values of ¢. The values of g are best
estimates from the self-consistent method discussed in the text, ,uf‘) values are extrapolated
with straight lines which agree most closely with the large n (n 2 5) portions of the curves. {(a)
On the square lattice. (&) On the simple cubic lattice. {¢) On the four-dimensional hypercubic

lattice,

where

iy 0420060
2j .,k
J=0 k=D

It is assumed that x; behaves near the critical point as

—y(ulc
Xr [ﬁc(u,’(c), t, #,f) _ ﬁ] yl " )

where ,u,f(c)(t, s} is the value of y; at which the system goes critical.

The critical behaviour of the system is obtained self-consistently as follows.

3.4

(3.5)
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Figure 4. 3; versus |/n for p = 0 and various values of ¢. The values of 4 are best estimates
from the self-consistent method discussed in the text. 8, values are extrapolated with straight
lines which agree most closely with the large n (n 2 5) portions of the curves. {a) On the
square lattice. (b} On the simple cubic Iattice. (¢} On the four-dimensional hyperoubic lattice.

(i) For a given value of ¢ and jf, choose a value 8 >~ 8.

(i) Calculate p®), as discussed previously for n < N, where N is the highest order of
expansion, then extrapolate graphically to n — o0 to get ufc) (cf figure 3).
(iii) Analyse x; as a power series of £ using a ratic method with u; = ufc). Specifically,

B is calculated as

-1 ;
(ny __ Z?:o Un—1 1)
¢ Z?:o Un.i#;

The extrapolation B to n — 00 is shown in figure 4, where 8, = 8.
(iv)Compare the g, with the chosen value of 8 in step (i). If they are different, set 8 = §;
and repeat.

(3.6)

W
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It is aiso observed that 5. is not sensitive to small changes of ;. The weak correlation
between u.f‘) and 8. permits a relatively accurate estimate of critical parameters. Results
for various values of ty and ¢ are [isted in table 1.

For the pure lattice-gas case, B, is inversely proportional to J and uf") is proportional to
J. Consequentiy ,ch.fc) is a quantity independent of J. Since ¢ and pf in essence produce
an effective lattice-gas interaction, we would then expect the quantity ,BQ,u,f") to be weakly
dependent on ¢ and . This quantity is also listed in table 1. It is tentatively concluded
that — ﬁcufc) = 3.53, 2.66 and 2.40 on two-, three- and four-dimensional hypercubic lattices

for small values of t. When ¢ is larger, the value of —ﬁcul@ tends to become larger.

Having determined the value ,u.fc), the series (3.3) becomes an ordinary single variable
power series. The critical exponent as defined in (3.5) is then determined using the standard
Dlog Padé method [8]. The Padé method gives estimates of both 8. and y. The estimated
B: from the Padé method is compared with the previous estimate for further fine corrections.
The series is alse analysed using the ratio method and the results are consistent with the
Padé estimate but with a larger error bar. Physical singularities from the Padé analysis are

listed in tables 2 and 3 and the results for v are summarized in table .

Table 1. Summary of the critical parameters.

()

()

e d 4 B #y - ¥
0 2 0.0 1.763 (exact) =2 (exact) 3.526 (exact) 1.75 (exact)
0.2 1.73 £ 0.02 ~2.030 £ 0.005 3.51 £ 0.04 1.75 £ 0.05
0.4 169+ 0.03 -2.11+£0.01 3.57 £ 0.06 L7501
0.6 1.67 £0.05 —-2.225£0.01 372£0.01 1.75 k0.1
3 0.0 0.887 3 0.0012 —3 (exact) 2.661 £ 0.003 1.252 + 0.003%
0.2 0.875 £0.01 =3.025 * 0.005 2.65+0.03 125 £+ 0.0}
0.4 0.86 L 0.1 -3.00+0.01 2,66 £ 0.03 1.25 £ 001
0.6 0.835+0.01 =3.19+0.01 2.66 40,03 1.22 £ 0.07
0.8 0.82 £ 0.02 —3.325 £ 0.01 2734007 1.24 £ 0.05
1.0 0.30 4 0.03 -3.465% 0.02 28+0.1 1.22 £ 0,08
4 0.0 0.6000 £ 0.0002 —4 (exact) 2.4000 £ 0.0008 1105 % 0.003Jr
0.2 0.5965 =+ 0.0005 —4.020 4 0.005 2,398 £ 0.008 1.105 & 0.005
0.4 0.587 £ 0.002 —-4.08 £0.01 2,395 0.008 1.08 £ 0.02
0.6 0.573 £ 0.002 —4.18 £0.01 2,395+ 0.008 110+ 0,02
.8 0,560 = 0.004 —4.31 2001 2414002 L.10+0.02
1.0 0.548 4 0.005 —4.,46 +0.02 244 4+ 0.03 1.08 £ (.02
1 2 02 1.74 £ 0.02 —-2.022 +=0.002 352 +0.04 1.7+0.1
0.4 1,70 0.04 —2.083 3 0.005 3.54 £0.08 1.7£0.1
3 0.2 0.88 £ 0.01 —3.020 £ 0.005 2.66 £ 0.03 1.24 + 0,01
0.4 0.865 £0.01 —3.085+0.0] 2.67+003 1.25 £ 0.02
0.6 0.845 £ 0.01 ~3.184£ 0,01 2.69+0.03 .25 +0.02
0.8 0.82 002 -3.30+0.02 2710407 1.27 £ 0.03
1.0 0,795 £ 0.03 —-3.434£0.02 273401 12301
4 0.2 0.596 £0.002 —4.,020 £ 0.005 2.396 £ 0.008 111+ 0.01
0.4 0.588 £ 0.002 —4.08 % 0.0 2.399 £ 0.008 1.10 £ 0.01
0.6 0.575 4 0.003 -4,17+£0.01 2.40 4 0.01 £104 001
0.8 0.561 £ 0.004 —-429x0.01 2.41 £ 0.01 1.10+0.02
1.0 0.55 £ 0.01 —4.44 £ 0.03 244 £+ 0.04 1L10£ 003

T Value obtained by analysing of the lattice-gas compressibility expansion to order of 813 (n=12).
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Table 2. Padé analysis of the inverse compressibility series on two-, three- and four-dimensional
lattices for pe = 0, p) = .r-l.fr). In the table, D and & denote the order of the denominator and
numerator of the Padé approximants, 8F is the real pole closest to the origin and »* is the
corresponding residue.

H N/D D 3D 4D
B vt iy v? ¥ ¥
0.2 2/3 1.7493 1.7855 0.8777 1.2420 0.3970 Litlt
3/3 1.7008 1.5470 0.8718 1.2348 0.5940 1.0425
4/3 [.7161 1.6330 0.8808 1.2623 0.5966 1.1066

2/4 1.7176 1.6468 0.8723 1.2341 0.5960 1.0979
3/4 1.7263 1.6913 0.8789 1,2478 0.5966 1.1062
4/4 1.7411 1.7793 0.8800 1.2554 0.5963 1.1026
2/5 1.7358 1.7540 0.8807 1.2624 0.5966 1.1065
3/5 Nil Nil 0.8800 1.2555 0.5964 1.1036
2/6 1.7497 1.8604 0.8739 1.1611 0.5968 1.1084

0.4 2/3 17312 1.8919 0.8614 1.2540 0.5840 1.0589
3/3 1.5933 11747 0.8607 1,2492 0.5846 1.0691
4/3 1.6575 1.5327 0.8610 1.2510 0.5867 1.1008
2/4 1.6691 16112 0.8608 1.2495 0.5846 £.0691
3/4 1.6814 1.6752 0.8628 1.2555 0.5840 10579
Afd 1.6906 L7310 0.8622 1.2356 0.5866 1.0990
2/5 1.6884 1.7208 0.8608 1.2499 0.5868 Laon
3/5 1.7085 1.8969 0.8622 1.2556 0.5866 1.0992
2/6 1.6593 1.8019 0.8647 1.2541 0.5869 1,1023

0.6 2/3 1.7665 2.1053 0.8445 1.2851 0.5798 1.1455
3/3 1.6647 1.6405 0.8258 1.1459 0.5699 1.0479
4/3 1.7267 1,9940 (.8302 1.1835 0.5727 1.0821
2/4 1.6910 1.7781 0.8301 1.1863 0.5712 1.0650
3/4 1.7021 1.8329 0.8351 1.2274 0.5746 1.1054
474 Nil Ni 0.8341 1.2180 0.5736 1.0927
2/5 1.7045 1.8476 0.8262 1.1602 0.5729 1.0844
3/5 1.6873 1.7644 0.8342 1.2189 0.5737 1.0938

2/6 1.8140 2.8739 0.8394 1.2818 0.5747 [.1106
0.8 2/3 0.8349 1.3401 0.5702 1.1728
3/3 (.8085 1.1693 0.5568 1.0532
4/3 0.8225 1.2864 0.5711 1.2459
2/4 08130 1.2047 0.5588 1.0759
3/4 0.8158 1.2327 0.5612 1.10G67
4/4 0.8181 1.2444 0.5603 1.0903
2/5 0.8180 1.2430 0.5627 1.1197
3/3 0.8185 1.2478 0.5605 1.0920
2/6 0.8184 1.2473 0.5550 1.0725
1.0 2/3 0.5204 1.3710 0.5611 1.1997
3/3 0.7903 1.1896 0.5455 1.0688
4/3 0.7864 1.1605 0.5478 1.0937
2/4 0.7943 1.1218 0.5475 1.0895
3/4 0.7858 1.1550 0.5475 1.08%4
4/4 0.7895 1.1841 0.5482 1.0980
2/8 0.7881 11755 0.5475 1.0894
3/5 07917 1.2022 0.5475 1.0895
2/6 0.7976 1.2592 0.5480 1.0957

Results in table 1 indicate that the critical exponent is not affected by the electrons,
while the critical temperature, as expected, is dependent on the electronic parameters. The
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Table 3. Pad¢ anaiysis of the inverse compressibility series on two-, three- and four-dimensional
lattices for str = I, = . In the table, D and N denote the arder of the denominator and
numerator of the Padé approximants. 87 is the real pole closest to the origin and * is the
comesponding residue,

H N{D 2D D 40
B ¥’ B ¥* 4 7"
02 273 1.7776 1.7855 0.8796 1.2483 0.5973 1.1106
3/3 1.6158 1.5470  0.8797 12484  0.5941 1.0535
413 1.7034 1.6330  0.8814 12584 0.5969 1.1065
274 1.7044 1.6468  0.8797 1.2484 0.5934 1.0829

3/4 1.7340 1.6913 0.879%6 1.2483 0.5968 1.1053
4/4 1.7539 1.7793 0.8810 1.2552 0.5967 1.1047

2/5 Nil Nil 0.8814 1.2584 0.5969 1.1066
3/5 1.7765 1.7793 0.8810 1.2552 0.5967 1.1047
2/6 Nil il 0.8750 1.1413 0.596% 1,1070

0.4 2/3 1.7785 1.9720 0.8690 1.2771 0.5940 1.1463
3/3 1.3876 0.5580 0.8506 1.1244 0.5836 1.0458
4/3 1.4243 0.6539 0.8611 1.2242 0.5875 1.0985
2/4 1.6058 1.3453 0.8555 1.1777 0.5840 1.0519
3/4 1.6940 1.6831 0.8645 1.2526 0.5900 1.1258
4/4 1.7198 1.8040 0.8649 1.2554 0.5830 1.1045
245 Nil Nil 0.8608 1.2218 0.5876 [.0995
3/5 1.7276 1.8519 0.8649 1.2554 0.5880 £.1050
2/6 1.6583 1.4622 0.8957 1.9849 0.5897 1.1376

0.6 2/3 0.8564 £.3206 0.5828 1.1585
3/3 0.8195 1.0777 0.5689 1.0296
4/3 0.7912 0.8914 0.5706 1,0485
2/4 0.8290 1.1530 0.5711 1.0570
3/4 0.8420 1.2491 0.5765 1.1128
4/4 0.8435 1.2544 0.5753 1.0996
2/5 Nil Nil 0.5693 1.0395
3/5 0.8436 1.2545 0.5753 1.1005
2/6 0.8303 1.1407 0.5671 1.0246
0.3 2/3 0.8417 1.3563 0.5726 1.1828
3/3 0.8025 11273 0.5556 1.0402
4/3 0.8357 1.3762 0.5701 1.2029
2/4 0.8092 1.1739 0.5582 1.0671
3/4 0.8202 1.2447 0.5623 1.1063
4/4 0.8226 1.2631 0.5612 1.0946
2/5 0.8277 1.3081 0.5650 1.1385
s 0.8228 1.2652 0.5613 1.0958
2/6 0.8215 1.2529 0.5592 1.0694
1.0 2/3 0.3203 1.3621 0.5629 1.2044
/3 0.7845 1.1165 0.5452 1.0636
4/3 0.7924 1.2189 0.5508 1.1199
2/4 (.7889 1.1935 0.5473 1.0844
3/4 0.7911 1.2078 0.5494 1.1037
4/4 0.7652 1.1377 0.5494 1,1036
2/5 0.7913 1.2094 0.5498 1.1082
3/5 0.7881 L1901 0.5494 11036
2/6 0.8026 1.3087 0.5493 1.1027

higher y value than the mean-field value of 1 for r # 0 is almost certainly caused by the
logarithmic correction terms, as discussed previously.



Thermodynamics of a liguid-metal model 377

4. Summary

A lattice model for liguid metals proposed by Nara, Ogawa and Matsubara is studied using
exact high-temperature series expansions. The grand-canonical potential is expanded to
order 8% on two-, three- and four-dimensional lattices exactly, Thermodynamic quantities
are calculated from the grand-canonical potential using the usual thermodynamic relations.
In particular, the lattice-gas susceptibility series is calculated exactly to order 5'°.

Our series data satisfy the relation that, when the fermion hopping energy ¢ = 0 and
the lattice-gas chemical potential y; = —dJ, where J is the nearest-neighbour atomic
interaction for the lattice gas and 4 is the dimensionality, the lattice-gas atomic density o
is % Our series data are also consistent with the relation that when the fermion chemical
potential 1 = 0, the fermion density o is %

When the fermion hopping energy ¢ is zero, the critical behaviour is independent of
the fermion chemical potential uy. In this case, the system goes critical only at a single
value for the lattice-gas atomic chemical potential t; = —dJ. The susceptibility takes its
maximun value as a function of B at this value of the lattice-gas chemical potential.

For fixed positive values of the fermion hopping enerzy and the fermion chemical
potential, it is conjectured that the system also goes critical at a single value of the lattice-
gas chemical potential. The critical value of the lattice-gas chemical potential is taken to be
the value at which the susceptibility takes its maximum as a function of #. When ¢ > 0, this
value is weakly dependent on estimates of the critical temperature. The values of ,u.f“) and

B. are estimated self-consistently. It is observed that when ¢ or sy increase, x© decreases
and that ,u,(”) has a very weak dependence on the fermion chemical potential. The values of

—ﬁc,u,,(c) are almost constant and depend only on the dimensionality. For small ¢, the values
are 3.53, 2.66 and 2.40 for two-, three- and four-dimensional Jattices, respectively.

The critical exponent of the susceptibility is calculated using a self-consistent Padé
analysis. It is found that the critical exponent is independent of the values of ¢ and gy,
and is estimated to be 1.75, 1.25 and 1.10 on two-, three- and four-dimensional lattices,
respectively, in accordance with the corresponding values for the pure lattice-gas. For the
lattice-gas model, the upper critical dimension is 4. Therefore, the susceptibility exponent
should be exactly 1. The higher value of the numerical estimate is presumably due to
logarithmic correction terms which normally appear at critical dimensions.
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