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Abstract. A lattice model for liquid metals proposed by Nara. Ogawa and Matsubam is 
studied using high-tempenhue series expmsions. The grand-canonical potentials are expanded 
exactly to order p9 and the susceptibilities are expanded to order PI' on two., Ihree-, and four- 
dimensional hypercubic lattices. It is conjectured that, for fixed values of the fermion hopping 
energy and fermion chemical potential the syslem goes critical only at particular values of 
the lattice-gas chemical potential. ?he critical values of ule lattice-gas chemical potential and 
the critical temperature are calculated self-mnsistentiy and the critical exponent of the invene 
isothermal compressibility is estimated using Pad6 approximanls. It is concluded that the critical 
behaviour of the model is not affected by the presence of the fermions. This conclusion is 
consistent with the exact solution on a one-dimensional lattice by Thompson, Matsubam and 
yang. 

1. Introduction 

In a previous publication, a lattice model for metal-non-metal transitions proposed by 
Nara, Ogawa and Matsubara (NOM) [I]  was solved by Thompson, Matsubara and Yang 
(TMY) 121 on a one-dimensional lattice. The model is composed of spinless fermions on a 
background of lattice gas atoms with nearest-neighbour atomic interactions and electronic 
hopping. It was found that, near the critical point (T -+ Of), the thermodynamic and 
cluster-size properties of the model were not affected by the presence of the fermions. 
However, properties of the model in higher dimensions are still unknown. This paper studies 
high-temperature series expansions for the problem on two-, three- and four-dimensional 
hypercubic lattices. 

The model is defined by the Hamiltonian 

where ui = 0, 1, represents the absence and presence of a lattice gas atom at site i ,  and ui 
(U,! ) are fermion annihilation (creation) operators at site i. Equation (1.1) is defined on an 
N-site regular lattice and the other notations are standard. 

ZG = n e x p  [ - B'H + BwN + B/.~,dr]  
The grand partition function is defined as 
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where GI and pf are the chemical potentials of a lattice gas atom and of a spinless fermion, 
respectively. NI = E,",, ui and JV! E,"=, ni are their respective total number operators, 
and ni = uIui is the fermion number operator at site i. 

When (1.2) is expanded as a power series, each term can be associated with a unique 
graph. In this paper, (1.2) is expanded to order of P I o .  The critical properties are obtained 
by analysing the derived susceptibility series. 

Y S Yung et ul 

2. High-temperature series expansions 

Following our work on the strongly correlated Hubbard model [3-5] and the strongly 
correlated Falicov-Kimball model [6], we define 

N N 

Zo = Tr$@ = n zp n 2;' = (1 + z 1 ) ~ ( 1  + z f ) N  (2.1) 

and zr = e@'L/ are the fugacities of a lattice gas atom and a fermion, 

< = I  [n,=o,ll ]=I Ini=o.l1 

where zI = 
respectively. The grand partition function Zo can then be written as 

where 
1 
zo 

(A) = -Tr $.??A 

and 

(2.3) 

(2.4) 

If we associate up,) with a bond connecting the two nearest-neighbour sites i and j .  
and associate (uiujuiaj) with a fermion walk from site j to site i along the bond, (XI) can 
be represented by fermion walks of up to n steps on graphs of up to n edges embedded in 
the lattice. 

As far as the partition function is concerned, the relevant configurations are those which 
leave the state of the system unchanged. In the graphical representation, fermions must 
retum to their initial position at the completion of the walk. This implies an equal number 
of fermion creation and annihilation operators at any lattice site. Using the anti-commutation 
relation of the fermions, and noting that the spin operators commute with each other and 
with the fermion operators, those operators which operate at the same lattice site can be 
brought together. If we also notice the fact that (U') = {U) and (n') = (n),  the magnitude 
of the weight of a graph is composed of the following factors: 

\ ,  ' : 
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All graphs of up to n edges contribute to (X:). The rules for calculating the weights 
can be summarized as follows. 

(i) The power of p~ is equal to the number of lattice sites a graph occupies. 
(ii) The power of p f  is equal to the number of fermions. All fermions must be moved and 

(iii)The power of qf is equal to the number of lattice sites visited and left unoccupied by 

(iv)The power of t / J  is equal to the total number of step movements of the fermions. 
(v) The sign of the weight is determined by the number of permutations of the fermion 

operators required to bring together the operators at the same lattice site. 

For instance, on the square lattice, the three-site graph *-a--. has six embeddings. 
For (q) on this graph, there can be no more than one fermion. The fermion could initially 
be at either end of the graph with a two-step movement, or it could initially he at the middle 
site with two two-step movements. The weight of the graph can therefore be calculated as 

the initial fermion configuration must be restored at the completion of the walk. 

any fermions at the completion of the walk. 

where the combinatorial factor K,,,, is associated with (X:) on an m-edge graph with a 
2u-step fermion movement which visited U edges. It is calculated through 

Knl00 = 1 
K,,w = n!  

K n m ~  = 0 when n < m or n,m < 0 or n > 0 and m = 0 

Kn+lm,O,o = m K 0 m  + mK,,,-i,o.o 

K,,,, = C& CiU-mfuKn-~u,i.~.~ when U, U # 0 

(2.7) 

min("-2ll.m) 

i=m-u 

where Cj = i ! / ( i  - j ) !  j ! .  
The grand-canonical potential per lattice site g is the N-coefficient of the ZG expansion 

where ('H& is the N-coefficient of (7-l:) and qr = 1 - pi .  
For instance, the grand-canonical potential of the model on the square lattice is expanded 

as 
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+ ~ [ 2 + I Z ( f ) ' p ~ - l 2 ( ~ ) * p ~ + 3 6 p ! + 7 2 p r  3! 

In general, on hypercubic lattices, g has the expansion form 

where [n/2] is the integer part of n / 2  and &j is the Kronecker delta. 

%I2 - 100 - 7 W O -  IW - 

expansions are carried out to order of ?-tho on two-, three- and four-dimensional hypercubic 
lattices for general values oft, CLI and p f  and to order of %' for t = Ot. 

Expansions of the thermodynamic quantities can be calculated using standard 
thermodynamic relations [7]. For instance, the lattice-gas and the fermion densities are 
calculated as 

On the square lattice, comparing (29) with (2.10). we have a(') - 2 a(') - 2 U?; = 4, 
(2) - -4, a(') - 12, U$& = -14. a') - 2, @, = 12, a$; = O W -  -12, a(3) ' WO- - 36, ;(A ,,, - -72, 

of:: = -12, U% = 90, +,, (3) - - -84, 4; = 84, U;; = -360, a% = 232 .... The 

(2.11) 

It is easily proved using the particle-hole symmetry properties for lattice gas atoms and 
for the fermions that 

pt = 4 when t = O  and p ~ = - d J  

p f = +  when p ~ f = O .  
(2.12) 

Our high-temperature series-expansion data are consistent with (2.12). 
The critical behaviour is obtained by analysing the susceptibility series. In particular, 

the lattice-gas susceptibility has the same critical behaviour as the isothermal compressibility 
and is given by 

t The additional expmsion coeficienrs are available aU the British Library, reference number SUP 70052. 
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(2.13) 

Without loss of generality, in the following an arbitrary unit of energy is chosen so that 
J = 1. The susceptibility in (2.13) can then be expanded as a power series in p, pf, t and 
p , ~ .  Explicitly, we have 

(2.14) 

(0) - 1 (1) - 1 (1) - 0 ‘(2) - I For example, we have on the square lattice that uwo - 4,  uwo - a,  ulcQ - , wo - -%, 

‘010 - 16’ IW - 4’ ‘ZcQ - ‘CO3 - 96’ U010 - -52, ‘011 - 7 

U@) - -1 u ( ~ )  - -a, U?& = 0, . . , . Higher-order exansion coefficients can be derived 
from the expansion coefficients for the grand-canonical potential given in the appendix. 

(2) - 1 ‘(2) - -1 (2) - 1 (3) - -E (3) - 1 (3) - 0 ‘ ( 3 3  = -1, 

110 - 16’ 2 W  - 

3. Series analysis 

From the lattice-gas-Ising-model equivalence, it follows that, when f = 0, there is only 
one value for pi (= -dJ)  at which the system goes critical. The model with the above 
parameter values corresponds to the king model in a zero external field. It is easily seen 
from the last section that. when t = 0, the critical behaviour is independent of the fermion 
chemical potential p, or fermion density p f .  This suggests that the model with f = 0, 
pi = -dJ (pi = 4) for any value of p , ~  (pf)  should have the Isin critical behaviour. 

obtained for those coefficients to order n = 12. Standard methods [SI for series analysis are 
applied to the series. The results compare favourably with the known values for the king 
model in two and three dimensions. The value of y is known to be exactly [9] in two 
dimensions and 1.2390 f 0.0025 in three dimensions [S, 10,111. 

The upper critical dimension of the king model is 4. Therefore, it is expected that 
y = 1 in four dimensions. However, the numerical analysis indicates a higher value. It 
is often the case that logarithmic corrections occur at the critical dimension 1121. The 
logarithmic correction terms will account for the apparent inaccuracy of the Pad6 analysis 
in four dimensions. 

When t = 0, the relevant expansion coefficients for g are ai$. i: TWO extra terms are 

It is observed numerically from our high-temperature series expansions that 

for any j3 and p, . z lw,=-d,,=o = O (3.1) 

Equation (3.1) is confirmed on two-, three and four-dimensional hypercubic lattices to 
order of p13. which is the highest order of our expansion. From (2.14), equation (3.1) is 
equivalent to 

” x iu?) rcQ (-d)’-] = 0 for 0 < n . 
i=O 

(3.2) 
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( b )  -3.1 I I I 

t=i.o 

\ P 
0 I 2 3 4 5 

P 

Figure 1. The lattice-gas chemical potential pmu at which XI is a maximum, calculated with XI 
expanded to order of p" (n = IO) and for pf = 0: (a)  an lhe square lattice; ( b )  on lhe simple 
cubic lanice, (c )  on the four-dimensional hypercubic lattice. 

It is also established numerically that, for any fixed p and r = 0, xi takes its maximum 
value at pi = -d .  

Therefore, when I = 0, the critical behaviour of the system can be determined by fist 
finding the value of /.&[ = pmr at which takes its maximum value with fixed temperature, 
then analysing xt as a power series in p at /.&[ = F-. 

When t # 0, it is not expected that a similar exact relation exists. One needs to analyse 
a true multi-variable series to determine the critical behaviour of the system. Unfortunately, 
there is not a generally accepted reliable method. The partial differential approximation 
(PDA) method [8] might be of possible assistance but the authors were unable to apply it to 
the present series. 

When t # 0, in a wide temperature range (p  > &), for fixed p, f and pf, the value 
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Figure 2. The lattice-gas chemical potentia.! fimu at which is a maximum calculated with XI 
expanded to order of b’‘ (n = 10) and for , ~ f  = 1: (a) on the square lattice; (b) on the simple 
cubic lanice; (e)  on the four-dimensional hypercubic lattice. 

of pi = p m  at which xj  takes its maximum is insensitive to the actual value of the 
temperature, as shown in figures 1 and 2. From the figures, it is seen that pW changes by 
a few per cent when p changes by an order of magnitude. On the other hand, the value of 
XI changes rapidly with p .  

From the above discussions and by analogy with the pure lattice gas or t = 0 case, it is 
conjectured that for each value oft > 0 and p,s > 0, there is only one value for pj at which 
the system goes critical. Therefore, by fixing values for t and p, ,  the problem reduces to 
a two-variable series. Regarding t and p,s as parameters, (2.14) can be rewritten as 

(3.3) 
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0.0 0.1 0.2 0.3 0.4 0.5 
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I I I t i 
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Figure 3. fir1(") v e m s  I/n for fit = 0 and various values o f t .  The values of @ ae  best 
estimates fmm the selfconsistent method discussed in the text. fiy) values are extrapolated 
with straight lines which a@ee most closely with the large n (n 2 5) portions of the curves. (a) 
On the square lattice. (b) On the simple cubic lattice. (c) On the four-dimensional hypercubic 
lattice. 

where 

It is assumed that X I  behaves near the critical point as 

(3.5) -POLF'.f.P,) 
X I  - [a($'> f ?  PI) - PI 

where #(t ,  p,) is the value of at which the system goes critical. 
The critical behaviour of the system is obtained self-consistently as follows. 
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1.6 

ci 1.4 

1.2 

( a )  1.0 
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Figure 4. fJc versus I ln  for pf = 0 and various values of f .  The values of p~ are bea estimates 
eon? the self-consislent method discussed in the text. pc values are extmpolated with stnight 
lines which agree most closely with lhe large n (n 2 5 )  portions of the curves. (a)  On the 
square lattice. ( b )  On lhe simple cubic lattice. (c) On the four-dimensional hypercubic lattice. 

(i) For a given value oft and pf, choose a value p ? pc. 
(ii) Calculate p,$& as discussed previously for n i N, where N i s  the highest order of 

(ui)Analyse xl as a power series of p using a ratio method with p~ = I.?'. Specifically, 
expansion, then extrapolate graphically to n + CO to get p y )  (cf figure 3). 

ff' is calculated as 

The extrapolation p,'"' to n --f 60 is shown in figure 4, where pc 

and repeat. 

p,". 
(iv)Compare the pc with the chosen value of p in step (i). If they are different, set p = pc 
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It is also observed that pc is not sensitive to small changes of pl. The weak correlation 
between $) and pc permits a relatively accurate estimate of critical parameters. Results 
for various values of pf and t are listed in table 1. 

For the pure lattice-gas case, pc is inversely proportional to J and pf" is proportional to 
J .  Consequently pC$) is a quantity independent of J .  Since t and pf in essence produce 
an effective lattice-gas interaction, we would then expect the quantity pC$' to be weakly 
dependent on t and pf. This quantity is also listed in table 1. It is tentatively concluded 
that -p&) = 3.53, 2.66 and 2.40 on two-, three- and four-dimensional hypercubic lattices 
for small values off. When t is larger, the value of -pcpf) tends to become larger. 

Having determined the value py),  the series (3.3) becomes an ordinary single variable 
power series. The critical exponent as defined in (3.5) is then determined using the standard 
Dlog Pad6 method [8 ] .  The Pad6 method gives estimates of both pc and y .  The estimated 
pc from the Pad6 method is compared with the previous estimate for further fine corrections. 
The series is also analysed using the ratio method and the results are consistent with the 
Pad6 estimate but with a larger error bar. Physical singularities from the Pad6 analysis are 
listed in tables 2 and 3 and the results for y are summarized in table 1. 

Table 1. Summary of the critical panmeters. 

/*f d t Pc &?' -Wpt" Y 
0 2 0.0 1.763 (exact) -2 (exact) 3.526 (exact) 1.75 (exact) 

0.2 
0.4 
0.6 

3 0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

4 0.0 
0.2 
0.4 
0.6 
0.8 
1 .o 

1 2 0.2 
0.4 

3 0.2 
0.4 
0.6 
0.8 
I .o 

4 0.2 
0.4 
0.6 
0.8 
1.0 

I .73 I 0.02 
1.69 f 0.03 
1.67 i 0.05 

0.887 i 0.001' 
0.875 i 0.01 
0.86 i 0.01 
0.835 iO.01 
0.82 f 0.02 
0.80 f 0.03 

0.6000 i 0.0002 
0.5965 i 0.0005 
0.587 i 0.002 
0.573 i 0.002 
0.560 i 0.004 
0.548 i 0.005 
I .74 f 0.02 
1.70 i 0.04 
0.88 i 0.01 
0.865 i 0.01 
0.845 f 0.01 
0.82 i 0.02 
0.795 i 0.03 
0.596 i 0.002 
0.588 i 0.002 
0.575 i 0.003 
0.561 i 0.004 
0.55 f 0.01 

-2.030 f 0.005 
-2. I1 * 0.01 
-2.22s f 0.01 

-3 (exact) 
-3.025 i 0.005 
-3.09 f 0.01 
-3.19i0.01 
-3.325 i 0.01 
-3.465 i 0.02 

-4 (exact) 
-4.020* 0.005 
-4.08 I0.01 
-4.18 fO.01 
-4.31 i0.01 
-4.46 i 0.02 
-2.022 i 0.002 
-2.083 f 0,005 

-3.020 i 0.005 
-3.085 i 0.01 
-3.18 i 0.01 
-3.30 f 0.02 
-3.43 fO.02 
-4.020 i 0,005 
-4.08 i 0.01 
-4.17 iO.01 
-4.29 IO.01 
-4.44 f 0.03 

3.51 i 0.04 
3.57 i 0.06 
3.72i0.11 

2.661 i 0.003 
2.65 10.03 
2.66 i 0.03 
2.66 f 0.03 
2.73 i 0.07 
2.8 i 0.1 

2.4000 i 0.0008 
'2,398 i 0,008 
2.395 i 0.008 
2.395 i 0.008 
2.41 i0 .02  
2.44 i 0.03 
3.52 f 0.04 
3.54 i 0.08 
266 f 0.03 
2.67 i 0.03 
2.69 f 0.03 
2.71 iO.07 
2.73i0.1 
2.396 i 0.008 
2.399 i 0.008 
2.40 f 0.01 
2.41 i O . 0 1  
2.44 i 0.04 

I .75 i 0.05 
1.75iO.l 
I .75 i 0.1 

1,252 f 0.0037 
1.25f0.01 
1.25 i 0.01 
1.22 i 0.07 
1.24 f 0.05 
1.22 5 0.08 

1.109 & 0.003t 
l.105~0.005 
1.08 i 0.02 
1.10 io .02  
1.10 i 0.02 
1.08 i 0.02 
1 . l i O . 1  
1.71.0.1 
1.24i0.01 
I .U f 0.02 
1.25fO.M 
1.27 f 0.03 
1.2 i 0.1 
1.11 fO.O1 
1.10 i 0.01 
1 . 1 0 ~ 0 . 0 l  
1.10 f 0.02 
1 . 1 O i  0.03 

t Value obtained by analysing of lhe Iattice-gas compressibility expansion to order of pi3 (n = 12). 



Thermodymmics of a liquid-metal model 315 

Table 2. Pad6 andysis of the inverse compressibility series on two-, three- md four-dimensional 
lattices far flf = 0. MI = pf". In the table. D and N denote the order of the denominator and 
numerator of the Pad4 appronimmts. p: is the real pole closest to the origin and y' is the 
corresponding residue. 

f NID ZD 30 60 

B: Y *  B." Y' a Y' 

0.2 213 1.7493 1.7855 0.8777 1.2420 0.5970 1.1111 
313 1.7008 1.5470 0.8718 1.2348 0.5940 1.0425 
413 1.7161 1,6330 0.8808 1.2623 0.5966 1.1066 
214 1.7176 1.6468 0.8723 1.2341 0.5960 1.0979 
314 1.7263 1.6913 0.8789 1.2478 0.5966 1.1062 
414 1.7411 1.7793 0,8800 1.2554 0.5963 1.1026 
215 1.7358 1.7540 0.8807 1.2624 0.5966 1.1065 
315 Nil Nil 0.8800 1.2555 0,5964 1.1036 
2/6 1.7497 1.8604 0.8739 1.1611 0,5968 1.1084 

0.4 2/3 1.7312 1.8919 0.8614 1.2540 0.5840 1.0589 
313 1.5933 1,1747 0.8607 1.2492 0.5846 1.0691 
413 1.6575 1.5327 0.8610 1.2510 0.5867 1.1008 
214 1.6691 1.6112 0.8608 1.2495 0.5846 1.0691 
314 1.6814 1.6752 0.8628 1.2555 0.5840 1.0579 
414 1.6906 1.7310 0.8622 1.2556 0.5866 1.0990 
215 1.6884 1.7208 0,8608 1.2499 0.5868 1.1011 
31.5 1.7085 1.8969 0.8622 1.2556 0.5866 1.0992 
216 1.6993 1.8019 0.8647 1.2541 0.5869 1.1023 

0.6 213 1.7665 2.1053 0.8445 1.2851 0.5798 1.1455 
3/3 1.6647 1.6405 0.8258 1.1459 0.5699 1.0479 
413 1.7267 1.9940 0.8302 1.1835 0.5727 1.0821 
214 1.6910 1.7781 0.8301 1.1863 0.5712 1.0650 
3/4 1.7021 1.8329 0.8351 1.2274 0.5746 1.1054 
414 Nil Nil 0.8341 1.2180 0.5736 1.0927 
215 1.7045 1.8476 0.8262 1.1602 0.5729 1.0844 
315 1.6873 1.7644 0.8342 1.2189 0.5737 1.0938 
216 1.8140 2.8739 0.8394 1.2818 0.5747 1.1106 

0.8 213 0.8349 1.3401 0.5702 1.1728 
313 0.8085 1.1693 0.5568 1.0532 
413 0.8225 1.2864 0.5711 1.2459 
214 0.8130 1.2047 0.5588 1.0759 
314 0.8168 1.2327 0.5612 1.1007 
414 0.8181 1.2444 0.5603 1.0903 
215 0.8180 1.2430 0.5627 1.1197 
3/5 0.8185 1.2478 0.5605 1.0920 
216 0.8184 1.2473 0.5590 1.0725 

1.0 213 0.8204 1.3710 0.5611 1,1997 
313 0.7903 1.1896 0.5455 1.0688 
413 0.7864 1.1605 0.5478 1.0937 
214 
314 
414 
215 
315 
216 

0.7943 1.1218 0.5475 1.0895 
0.7858 1.1550 0.5475 1.0894 
0.7895 i.1841 0.5482 1.0980 
0.7881 1.1755 0.5475 1.0894 
0.7917 1.2022 0.5475 1.0895 
0.7976 1.2592 0.5480 1.0957 

Results in table 1 indicate that the critical exponent is not affected by the electrons, 
while the critical temperature, as expected, is dependent on the electronic parameters. The 
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Table 3. Pad6 analysis or the inverse compressibility series on twc-, three- and fourdimensional 
latices for f i t  = I ,  pt = pf). In the table, D and N denote the order of the denominamr and 
numerator of the Pad6 appmximants. #: is the real pale closest to the oidipin and Y* is the 
corresponding residue. 

t NjD 2D 

k Y *  

0.2 213 
313 
413 
214 
314 
4/4 
215 
315 
216 

0.4 213 
313 
413 

314 
414 

315 
216 

214 

215 

1.7776 1.7855 
1.6158 1.5470 
1,7034 1.6330 
1.7044 1.6468 
1.7340 1.6913 
1.7539 1.7793 
Nil Nil 
1.7765 1.7793 
Nil Nil 
1.7785 1.9720 
1.3876 0.5580 
1.4243 0.6539 
1,6058 1.3453 
1,6940 1.6831 
1.7198 1.8040 
Nil Nil 
1.7276 1.8519 
1.6583 1.4622 

0.6 213 
313 
443 
214 
314 
4 i4  
215 
315 
216 

0.8 213 
313 
4i3 

314 
414 

214 

215 
315 
2 i6  

1.0 213 
313 
413 

3 14 
414 

3/5 
216 

214 

215 

JD 4D 

Bf Y' B! Y' 

0.8796 1.2483 
0.8797 1.2484 
0.8814 1.2584 
0.8797 1.2484 
0.8796 1.2483 
0.8810 1.2552 
0.8814 1.2584 
0.8810 1.2552 
0.8750 1.1413 
0,8690 1.2771 
0.8506 1,1244 
0.8611 1.2242 
0.8555 1.1777 
0.8646 1.2526 
0.8649 1.2554 
0,8608 1.2218 
0.8649 1.7554 
0.8957 1.9849 
0.8564 1.3206 
0.8195 1.0777 
0.7912 0.8914 
0.8290 1.1530 
0.8429 1.2491 
0.8436 1.2544 
Nil Nil 
0.8436 1.2545 
0.8303 1.1407 
0.8417 1.3563 
0.8025 1.1273 
0.8357 1.3762 
0.8092 1.1739 
0.82M 1.2447 
0.8226 1.2631 
0,8277 1.3081 
0.8228 1.2652 
0.8215 1.2529 
0.8203 1.3621 
0.7845 1.1165 
0.7924 1.2189 
0.7889 1.1935 
0.7911 1.2078 
0.7652 1,1377 
0.7913 1.2094 
0.7881 1.1901 
0.8026 1.3087 

0.5973 I . I l 0 6  
0.5941 1.0535 
0.5969 1.1065 
0.5954 1.0829 
0.5968 1.1053 
0.5967 1,1047 
0.5969 1,1066 
0.5967 1.1047 
0.5969 1.IWO 
0.5940 1.1463 
0.5836 1.0458 
0.5875 1.0985 
0.5840 1.0519 
0.59M) 1.1258 
0.5880 1.1045 
0.5876 1.0995 
0.5880 1.1050 
0.5897 1.1376 
0.5828 1.1585 
0.5689 1,0296 
0.5706 1.0485 
0.5711 1.0570 
0.5765 1.1128 
0.5753 1.0996 
0.5693 1.0395 
0.5753 1.1005 
05671 1.0246 
0.5726 1.1828 
0.5556 1.0402 
05701 13029 
0.5582 1.0671 
0.5623 1.1063 
0.5612 1.0946 
0,5650 1.1385 
0.5613 1.0958 
0.5592 1.0694 
0.5629 1.2044 
0.5452 1.0636 
0.5508 1.1199 
0.5473 1.0844 
0,5494 1.1037 
0,5494 1,1036 
0.5498 1.1082 
0.5494 1.1036 
0.5493 1.1027 

higher y value than the mean-field value of 1 for t # 0 is almost certainly caused by the 
logarithmic correction terms, as discussed previously. 
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4. Summary 

A lattice model for liquid metals proposed by Nara, Ogawa and Matsubara is studied using 
exact high-temperature series expansions. The grand-canonical potential is expanded to 
order pa on two-, three- and four-dimensional lattices exactly. Thermodynamic quantities 
are calculated from the grand-canonical potential using the usual thermodynamic relations. 
In particular, the latticegas susceptibility series is calculated exactly to order p". 

Our series data satisfy the relation that, when the fermion hopping energy t = 0 and 
the latticegas chemical potential pi = -dJ, where J is the nearest-neighbour atomic 
interaction for the lattice gas and d is the dimensionality, the lattice-gas atomic density pi 
is 1. Our series data are also consistent with the relation that when the fermion chemical 
potential pf = 0, the fermion density pf is 4. 

When the fermion hopping energy t is zero, the critical behaviour is independent of 
the fermion chemical potential pf .  In this case, the system goes critical only at a single 
value for the lattice-gas atomic chemical potential p, = -dJ. The susceptibility takes its 
maximum value as a function of @ at this value of the lattice-gas chemical potential. 

For Gxed positive values of the fermion hopping energy and the fermion chemical 
potential, it is conjectured that the system also goes critical at a single value of the lattice- 
gas chemical potential. The critical value of the latticegas chemical potential is taken to be 
the value at which the susceptibility takes its maximum as a function of p .  When t > 0, this 
value is weakly dependent on estimates of the critical temperature. The values of py) and 
#Ic are estimated self-consistently. It is observed that when t or pf increase, x;) decreases 
and that py) has a very weak dependence on the fermion chemical potential. The values of 
-&$) are almost constant and depend only on the dimensionality. For small t ,  the values 
are 3.53, 2.66 and 2.40 for two-, three and four-dimensional lattices, respectively. 

The critical exponent of the susceptibility is calculated using a self-consistent Pad6 
analysis. It is found that the critical exponent is independent of the values of f and &, 
and is estimated to be 1.75, 1.25 and 1.10 on two-, three- and four-dimensional lattices, 
respectively, in accordance with the corresponding values for the pure latticegas. For the 
lattice-gas model, the upper critical dimension is 4. Therefore, the susceptibility exponent 
should be exactly 1. The higher value of the numerical estimate is presumably due to 
logarithmic correction terms which nonndy appear at critical dimensions. 
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